
Copyright 2001 CSREA.

Published in The 2001 International Conference on
Imaging Science, Systems, and Technology (CISST 2001)

June 25-28, 2001, Monte Carlo Resort & Casino, 3770
Las Vegas Blvd., South, Las Vegas, Nevada, USA.

Personal use of this material is permitted.
However permission to reprint / republish this
material for advertising or promotional purposed
or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any
copyrighted component of this work in other
works, must be obtained from the CSREA
(Computer Science Research, Education, &
Applications Press, USA Federal EIN # 58-
2171953).

Paper ID: 1038CT
Paper Title: No Silver Bullet for Software Visualisation Evaluation

Paper Author(s): Andrew S. Hatch, Michael P. Smith, Christopher M.B. Taylor and
Malcolm Munro

No Silver Bullet for Software Visualisation
Evaluation

Andrew S. Hatch, Michael P. Smith, Christopher M.B. Taylor and Malcolm Munro
Visualisation Research Group

Research Institute in Software Evolution
Department of Computer Science

University of Durham
Durham, DH1 3LE, UK

Abstract Software visualisation seeks to
aid comprehension of software; however,
there is still little progress in the evaluation
of such visualisations. This paper reports on
the current practice of evaluation in
software visualisation. Four evaluation
strategies are identified and discussed in
order to identify strengths and weaknesses
when applied to software visualisation.
Areas for improvement are suggested,
particularly with respect to the point at
which they are applied, and the need for
active interest in evaluation. It is intended
that this paper promote discussion and
future research whilst demonstrating that,
currently, no single method is adequate for
a full evaluation.

Keywords: Software Visualisation, Evaluation

1 Introduction
Software Visualisation (SV) seeks to aid
comprehension of a software system by those
who are involved with its creation, modification,
management and application by using
visualisation methods. SV is the application of
Information Visualisation (IV) in the Software
Engineering (SE) domain in order to offer a
means by which software engineers can visually
handle the large volume and complexity of
information which software systems present.
Program comprehension is the traditional
motivation for SV, resulting in evaluation
strategies which reflect this. This paper aims to
highlight the current state of SV evaluation, the

relative benefits of different evaluation
strategies and the drawbacks that should be
considered. As Brooks [1] posed the question
about finding a silver bullet for SE, so this study
ascertains whether there is a silver bullet for
evaluating software visualisations.

2 Background
Evaluation is a key component of any scientific
activity and is essential to the development of
the SV field. Without measurement, in some
form, it is very difficult to realise the benefits of
achievements in SV and allow development of a
theoretical underpinning to the discipline. For
new ideas, evaluation helps determine which are
of practical benefit to users, which of those are a
good foundation for future research, and those
which are of little value. Evaluation is also
useful in the comparison of multiple
visualisations resulting in an indication as to the
most suitable visualisation for the required
tasks. Lack of evaluation leads to researchers re-
treading old ground as poor ideas are recycled
through an absence of filtering.

Presently, evaluations of software
visualisations are poor. Most research effort is
focused on the development of visualisation
ideas, technology and application rather than the
development or application of evaluation
methods. Research in evaluation is considered to
be unattractive resulting in a discrepancy
between new developments in visualisation and
current evaluation strategies. This leaves few
useful frameworks and guidelines although there
are a few notable exceptions from Storey et al.
[2] and Petre et al. [3]. Hence, there is currently
little support for evaluating new visualisations

successfully, particularly those applied to new
fields in SE, or those using new visualisation
techniques. Unfortunately, this leads to some
visualisations failing to meet older evaluation
criteria and being rejected, even though the
ideas are sometimes promising. Some
evaluation methods developed in the IV
community can be applied to SV [4] [5],
although they are often too general to be used
exclusively.

Apart from the lack of support, evaluation is
considered difficult and, depending on strategy,
too time consuming to justify the investment.
Some evaluation strategies, such as collecting
empirical evidence, require resources which are
unavailable in terms of participants (subjects
and researchers), time and supporting
technology. As software visualisation is pushing
into new areas so traditional SV evaluation
methods are becoming less appropriate.
Contributing to all of the above problems is the
possibility that researchers are not familiar with
areas such as cognition and perception in
sufficient detail.

Kitchenham and Jones [6] identify several
methods of general SE research evaluation,
many of which are used in SV evaluation.
However, different methods are suitable to
different stages of visualisation development,
each with their own advantages and
disadvantages. It is important to realise there is
no silver bullet for software visualisation
evaluation, and there is a need to highlight the
issues.

3 Issues in Evaluation Techniques
This section examines the implications of
different evaluation techniques, which are
considered alongside suggestions on how to
improve current practice and highlight areas in
which SV evaluation requires development.

A common call within the SE community is
the need for empirical evidence to support
research findings. Although empirical evidence
is good, it is also important to seat this in a
strong theoretical background upon which
design guidelines and evaluation strategies can
build. These guidelines and strategies allow for
evaluation of ideas in early stages of
visualisation development before empirical
studies can be applied. In this way, poor
visualisations are rejected before they incur
large investment. Current evaluation
frameworks, being biased to program

comprehension and other lower level SE
activities, are becoming less suitable to
emerging visualisation arenas such as
architecture visualisation.

Deficiencies in evaluation methods lead to
the misapplication of design guidelines and
taxonomies to the evaluation process, for
example the use of Shneiderman’s tasks [4] by
Wiss et al. [7]. Whilst there are a number of
taxonomies for software visualisation, such as
that by Price et al. [8], they are purely intended
for classification and not for assessing merit.

Other general issues applicable across all
strategies are: the need for consistent
terminology for both the strategies themselves
(framework versus design guideline) and terms
used to describe visualisation components;
consideration of the application of strategies to
both partial and completed systems in order to
filter substandard systems whilst extracting
novel concepts; and special consideration of the
need for training for particular visualisation
systems, especially when these use new and
unfamiliar methods and technology.

In order to examine the following four
evaluation strategies, a simple model of a SV
life-cycle is presented. This is purely to
facilitate this comparison. A visualisation starts
with the initial idea, perhaps derived from
requirements, and progresses to the initial
visualisation concept defined in terms of
mappings, metaphor, representation and so on.
A prototype is then generated for demonstrating
main features before the final visualisation is
completed.

Each of the four evaluation strategies are
presented for discussion of their strengths and
weaknesses, application to stages in the SV
model above, and suggestions for future
direction of the evaluation research.

3.1 Design Guidelines and Frameworks
Beginning with the early stages of the life-cycle
of a visualisation, guidelines and frameworks
are used extensively within the design process.
Design guidelines are general pointers which
describe important issues to consider in the
creation of visualisation systems, but are not
formalised into frameworks. For example, Tufte
[5] gives several indicators concerning visual
presentation of quantitative data including
definitions and principles, whereas Young and
Munro [9] are more concerned with areas to be
considered when designing 3D software

visualisations. Frameworks, although primarily
intended for the analysis of a visualisation
system, invariably become design guides.

As the name suggests, these design
guidelines promote reasoning about current
ideas and visualisation concepts in order to
quickly determine if they are valid, useful and
incorporate the correct facilities. For example,
guidelines can identify key areas in cognitive
issues, navigation support, performance
requirements and so on. In this way, guidelines
help the researcher to filter out the development
of bad ideas, saving resources.

There are problems with the adoption of
design guidelines and using frameworks for
design purposes when those that are used are
outdated and newer alternatives are unavailable.
For example, Shneiderman’s seven tasks of
information visualisation [4] describe the steps
of overview, zoom, filter, details-on-demand,
relate, history and extract. For non-static data,
especially rapidly changing data, these
guidelines become difficult to evaluate against.
Considering the zoom step, how would this be
affected if data is constantly changing and data
is added which should be part of the display?

Some researchers have taken design
guidelines and applied them as though they were
an evaluation framework. It is not the intention
of some guidelines to be used as an evaluation
framework as they are usually general and open
to a large range of interpretation. For example,
some authors [10] collect together frameworks
and guidelines and perform an evaluation based
on this. By designing a visualisation system
with a set of criteria, and then evaluating that
system using the same criteria, there is a
possible danger of self-measurement in that the
system is designed for the evaluation, not the
original requirements. Guidelines are often
open-ended and are designed to be applicable in
a broad sense, therefore evaluating against these
guidelines can lead to justification of a
substandard property. For example,
Shneiderman’s relate property – which states
that the visualisation should be able to "view
relationships among items" [4] – can be taken in
a very broad sense and applied to any number of
visualisation functions. Further, by taking
guidelines out of context and applying them in
areas to which they are unsuited an evaluation
can be invalid. Whilst there is not a problem in
demonstrating that a visualisation adheres to
good guidelines, it should not be presented as an
evaluation, especially in the cases where the

guidelines are generic and open to differing
interpretations.

Application of guidelines as evaluations can
be attributed to a lack of good evaluation
frameworks in the field, and this will be
considered in the next section. It is important
that the community develop new guidelines in
order to deal with the new branches of software
visualisation research such as real-time,
dynamic, system and architecture visualisation.
There are useful generic guidelines in IV as a
whole, but it is desirable to have specific task-
related guidelines for software visualisation.

3.2 Feature-Based Evaluation
Framework

A feature-based evaluation framework is a
popular evaluation strategy due to the ease in
which it may be applied. As mentioned by
Kitchenham and Jones [11], such a framework
imposes no prerequisites on infrastructure or
target system, whilst providing simple screening
of systems at multiple levels of detail. A
framework is particularly valuable when
assessing many ideas, as often they are based on
multiple-choice questions that may be answered
rapidly. This allows relative benefits of the ideas
to be determined, so allowing comparisons to be
made, with a low investment. There are many
examples of such frameworks, such as Young
and Munro [9], and Knight [12].

Despite the apparent simplicity of a feature-
based framework, there are many inherent
problems that must be resolved in order to
implement a successful evaluation. Most
obvious is the style of question that should be
presented by the framework. A question
requesting a simple yes/no answer can be too
open ended. For example, Storey et al. [2]
suggests that a visualisation should "indicate
maintainer's current focus". It is easy to argue
that the current focus could always be the object
at the centre of the screen, despite this not being
the original intention of the question. However,
a question to be answered on a sliding scale may
then become too subjective, with the answer
often depending on the experience that the user
had with similar visualisations. For example, the
answer to a question asking whether a three-
dimensional visualisation was easy to navigate
would depend greatly on the previous
experience that the user had working within
such environments. Further issues arise when
the question is simply too vague to answered

accurately. An illustration of this is where Wiss
and Carr [13] asked users whether a
visualisation was simply ’good’ and ’easy to use’
with responses on a sliding scale.

Current frameworks also fail to consider
’negative features’ - unwanted features within
the visualisation that have a detrimental effect
overall, such as those considered by Globus and
Uselton [14]. Gestalt effects are significant, and
can distort the mental view that the user has of
the visualised data. Similar distortions may arise
through the use of animation, colour, size and
many other features. Failure to consider such
features when evaluating using a framework can
lead some visualisations to be considered
acceptable, when they are fundamentally flawed
in practice. Other important features currently
not covered by most frameworks include issues
of scalability and accuracy. Many current
frameworks do not consider aspects highlighted
by Tufte [5], such as complexity, density and
beauty. If these properties are important to the
visualisation then other methods of evaluation
such as guidelines or user study should be used.

A feature-based evaluation framework
should be applied at all points of the SV life-
cycle. However, unless the framework includes
contradicting ideals, such as low complexity
with high information content, care should be
taken to avoid detailed evaluation at the
conceptual stage, as otherwise the visualisation
may become tailored to satisfy the evaluation
criteria.

Despite the number of frameworks that
exist, many of these are based on the framework
by Storey et al. [2] or Shneiderman’s guidelines
[4]. In order to counter the problem of
modifying frameworks to suit a visualisation,
which may become a self-measuring process, it
is clear that more frameworks are required.
Although new generic frameworks would be
beneficial in order to consider some of the new
trends within IV generally, it is also necessary to
create more domain-specific frameworks to
reduce the problems of tailoring frameworks
whilst maintaining suitability and relevance.

3.3 Scenarios and Walkthroughs
Scenarios and walkthroughs, whilst not a
traditional evaluation method, offer a showcase
for demonstrating features of a visualisation, as
used by Chi et al. [15] for example. They move
the burden of the evaluation onto the reader,
allowing them to evaluate the visualisation in

terms of their own experiences and
requirements. This is often done alongside other
evaluation strategies in order to demonstrate
usage rather than to specifically assess the
visualisation. For example, work by Knight [12]
shows how information on determining the
impact of a change to the type of a class variable
can be found in the Software World
visualisation, alongside a feature-based
evaluation framework.

The use of scenarios and walkthroughs
presents a number of advantages and
disadvantages. They offer a more concrete
example of the usage of the visualisation for the
presented task and in a more natural way than
can be obtained simply from a description of the
visualisation in terms of mappings, metaphors
and representation. They often include many
screenshots as evidence, allowing an impression
of the user-interface, technology and visual
quality to be gained. This allows the reader to
make a more informative judgement on the
merit of the visualisation for the given task, by
placing the emphasis for evaluation on them and
therefore reducing the bias of self evaluation.
However, this means that evaluation is
individual to the reader and subject to their own
bias. This individual evaluation is not
propagated to the wider SV community in terms
of a concrete evaluation that can act as a
building block for future work. A storyboard of
images can provide much information about the
visualisation, nevertheless it is still hard to get a
feel for some issues such as navigation,
especially for example, in 3D visualisations.
Scenarios and walkthroughs can illustrate
aspects of the visualisation in more detail than
frameworks, however, the features demonstrated
will often only show the visualisation in a
positive light, highlighting well supported tasks
with favourable data and conditions. Only a
limited number of tasks can be covered due to
the verbose nature of detailed explanation and
images, even in large publications such as
theses. The problem becomes worse for smaller
scale publications. The subset of tasks covered
allows poorly or unsupported tasks to be hidden.

Scenarios and walkthroughs should not be
the primary focus of an evaluation, due to the
large possibility of bias by the researcher, and
the limited subset of the visualisation
demonstrated. However, they are relatively easy
to produce and can offer a way to check the
visualisation, from the initial idea to the final

visualisation, against support for some required
tasks.

Future effort could be invested in increasing
the use of specific tasks by basing task selection
on research into information requirements for
specific activities, such as those on program
comprehension by Mayrhauser and Vans [16].
These requirements can then be verified more
appropriately than by using a framework, as
scenarios and walkthroughs show the process by
which the information can be found, which can
be just as important as showing that it is actually
present.

3.4 User and Empirical Studies
Empirical studies attempt to provide hard
evidence to support hypotheses, for which there
has been an increasing call within the SE
community. Some researchers have applied
empirical studies to IV and SV, especially when
measuring the time taken to complete tasks.
There are, however, comparatively few good
attempts to use this strategy for evaluation in the
SV field. One strength of empirical studies is
their ability to allow statistical analysis of
results. This enables comparison of the
unsupported task against the use of a
visualisation to support it, along with cross
visualisation comparisons. A common test is to
measure the time taken to do a particular task
with and without visualisation support in order
to give quantifiable results such as ’the use of
the visualisation enables the task to be
completed three times quicker’. Statements like
these are more supportable than statements
which describe properties of a visualisation,
such as ’it allows the user to maintain focus and
context’.

User studies can be carried out
independently or as part of an empirical study.
By using questionnaires and user observations,
user studies record individual and collective
user-experience, as applied by Storey et al. [17]
for example. These kinds of studies are useful in
contrast to empirical studies with users as they
highlight individual issues that might be
overlooked when combining results of a number
of users. Nevertheless care must be taken in
generalising individual user-experience.

User and empirical studies have the benefit
of helping to reduce the bias of self evaluation,
but this introduces the overhead of having to
train users in the use of the visualisation. Failure
to train sufficiently can yield results which are

influenced by this confounding factor. Many
other influences can also confound results, most
notably user experience. This can have a
significant effect on experimental results due to
user differences in knowledge in the domain,
and familiarity with the task and environment.
Users bring their own bias, especially to
visualisations based on techniques such as 3D
interfaces where ability to learn, openness to
new techniques and spatial awareness can make
an impact on the results. Common sources of
error lie with the type and scale of tasks being
set, and also subject selection problems, for
example students are often used rather than
experienced programmers for the SV domain
[17] . One mistake is to then take these results
and generalise them beyond experimental
conditions, for example, applying student-based
studies to professional programmers and
academic environment-based studies to
industrial organisations. In order to counteract
the problems highlighted here, considerable
investment in time and organisation is required.
This can make such studies unattractive for
some situations, particularly small or short-term
projects.

Application of these studies relies on the
existence of a partial or full implementation of a
visualisation system and the infrastructure and
resources to support such experimentation. For
industry to adopt visualisation strategies and
tools, empirical evidence is preferred, although
this is not always required. To this end, larger-
scale problems which span longer time-frames
should be considered in evaluations.

4 Conclusions and future
directions

The goal of the work presented here is to
address the current position of evaluation within
the SV field, and to suggest future research. By
analysing the current evaluation process three
related areas of concern have arisen. Firstly, the
majority of SV research effort is concentrated
on the development of visualisation ideas,
technology and application rather than the
development or application of evaluation.
Secondly, this has led to a deficiency in the
quality and quantity of available evaluations.
Finally, this has an impact on the misapplication
of existing evaluations methods in an attempt to
perform an evaluation.

Four evaluation strategies have been
examined in terms of relative benefit, current

usage and scope for future development. The
primary conclusion is that more work is required
in all areas. In particular, it has been identified
that these strategies can be selectively applied to
different stages of a software visualisation in
order to cultivate good ideas efficiently, whilst
filtering poor ones. Each of these areas requires
effort in order to ensure that the strategies can
be applied to visualisations based around new
methods and technologies.

The principal problem in the use of design
guidelines is their misapplication as an
evaluation. Whilst guidelines are useful for
checking the presence of high level ideals, it is
too easy to justify conformance to these to be a
sole means of evaluation. A feature-based
framework should offer more specific
assessment. However, the current shortage of
suitable frameworks means that many are based
around design guidelines only, or tailored to
specific visualisations creating an atmosphere
open to self-measuring evaluations. More
relevant frameworks are required in order to
counter this problem. Scenarios and
walkthroughs offer an indirect evaluation of a
visualisation for specific tasks, by leaving the
decision of merit up to the reader. Hence they
should not be used as the main form of
evaluation, but could be beneficial for SV
evaluation especially if combined with increased
research into information requirements within
the SE domain. Empirical and user studies offer
the ability to distance the researcher from the
evaluation although the possibility for bias is
still present. As noted, industry is more likely to
adopt visualisation if sound empirical evidence
is demonstrated. In order to provide this, larger-
scale problems which span longer time frames
may become necessary.

In general the software visualisation field
should be more prepared to adopt suitable
evaluations developed by applicable fields, such
as software engineering, information
visualisation and human computer interaction.

It is clear that this study has raised more
questions than it has answered. This was the
intention in order to promote discussion within
the SV community. What is apparent however,
is that there is currently no silver bullet for
evaluating software visualisations.

Acknowledgements
Thanks to Claire Knight for her helpful
comments on this paper. Andrew Hatch and

Michael Smith are supported by EPSRC
research studentships.

References
[1] F.P. Brooks, "No silver bullet:

essence and accidents of software
engineering", IEEE Computer vol 20,
1987 pp.10-19

[2] M.-A.D. Storey, F.D. Fracchia, and
H.A. Müller, "Cognitive Design
Elements to Support the Construction
of a Mental Model during Software
Exploration", Journal of Software
Systems, Vol 44, 1999. pp. 171-185.

[3] M. Petre, A.F. Blackwell, and T.R.G.
Green, "Cognitive Questions in
Software Visualisation" Software
Visualisation: Programming as a
Multi-Media Experience, J. Stasko, J.
Domingue, M. Brown & B. Price
eds. MIT Press, January 1998. pp.
453-480

[4] B. Shneiderman, Designing the User
Interface Third Edition: Strategies
for Effective Human Computer
Interaction, Addison-Wesley, 1998,
pp. 522-541

[5] E. R. Tufte, The Visual Display of
Quantitative Information, Graphics
Press, February 1992 reprint.

[6] B. Kitchenham and L. Jones,
"Evaluating Software Engineering
Methods and Tools. Part 1: The
Evaluation Context and Evaluation
Methods", Software Engineering
Notes, Vol. 21, No. 1, Jan. 1996. pp.
12-15.

[7] U. Wiss, D. Carr, and H. Jonsson,
"Evaluating 3-Dimensional Information
Visualization Designs: a Case Study",
Proc. IEEE Conference on Information
Visualization, London, England, July
29-31, 1998, pp. 137-144.

[8] B.A. Price, R.M. Baecker, and I.S.
Small. (1993). "A principled taxonomy
of software visualization", Journal of
Visual Languages and Computing, Vol.
4, No. 3, 1993. pp. 211-266.

[9] P. Young and M. Munro, "Visualising
Software in Virtual Reality", Proc. 6th
International Workshop on Program
Comprehension (IWPC ’98), Ischia, Italy,
June 1998. pp. 19-26

[10] J. Huotari, "Supporting user’s
understanding of complex information
spaces by advanced visualisation
techniques". STeP’98 - Human and
Artificial Information Processing,
Jyväskylä, Finland, 1998. pp. 41-50

[11] B. Kitchenham and L. Jones,
"Evaluating Software Engineering
Methods and Tools. Part 5: The
Influence of Human Factors",
Software Engineering Notes, Vol. 22,
No. 1, Jan. 1997. pp. 13-15.

[12] C. Knight, “Virtual Software in
Reality” , PhD Thesis, Dept. of
Computer Science, University of
Durham, 2000

[13] U. Wiss, and D. Carr, "An Empirical
Study of Task Support in 3D
Information Visualizations", Proc.
IEEE Conference on Information
Visualization, London, England, July
14-16, 1999, pp. 392-399.

[14] A. Globus, and S. Uselton, Evaluation
of Visualization Software, Report NAS-
95-005, Computer Science Corporation,
NASA Ames Research Center, 1995

[15] E.H. Chi, J. Pitkow, J. Mackinlay, P.
Pirolli, R. Gossweiler, and S.K. Card.
“Visualizing the Evolution of Web
Ecologies” . Proc. ACM CHI 98
Conference on Human Factors in
Computing Systems, ACM Press, Los
Angeles, California, 1998. pp. 400-
407

[16] A. von Mayrhauser, and A.M. Vans,
“Program Understanding Behaviour
During Adaption of Large Scale
Software” 6th International Workshop
on Program Comprehension, IEEE
Computer Society, Ischia, Italy, 1998,
pp.164-172

[17] M.-A.D. Storey, K.Wong, and H.A.
Müller, "How Do Program
Understanding Tools Affect How
Programmers Understand Programs?",
Science of Computer Programming vol
36, March 2000. pp. 183-207

